PROGRAMMABLE CONTROLLER

FP OPC Server

User’s Manual
Before beginning

Liability and copyright for the hardware

This manual and everything described in it are copyrighted. You may not copy this manual, in whole or part, without written consent of Panasonic Electric Works Europe AG (PEWEU).

PEWEU pursues a policy of continuous improvement of the design and performance of its products. Therefore we reserve the right to change the manual/product without notice. In no event will PEWEU be liable for direct, special, incidental, or consequential damage resulting from any defect in the product or its documentation, even if advised of the possibility of such damages.

We invite your comments on this manual. Please e-mail us at:

techdoc.peweu@eu.panasonic.com.

Please direct support matters and technical questions to your local Panasonic representative.

Limited warranty

If physical defects caused by distribution are found, PEWEU will replace/repair the product free of charge. Exceptions include:

- When physical defects are due to different usage/treatment of the product other than described in the manual.
- When physical defects are due to defective equipment other than the distributed product.
- When physical defects are due to modifications/repairs by someone other than PEWEU.
- When physical defects are due to natural disasters.
Important symbols

One or more of the following symbols may be used in this documentation:

DANGER

Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

Indicates a hazardous situation which, if not avoided, could result in serious or moderate injury.

CAUTION

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOTICE

Indicates a property damage message

Note

Contains additional information or special remarks

Example

Contains an illustrative example of the previous text section.

Procedure

Indicates that a step-by-step procedure follows.

Reference

Indicates where you can find additional information on the subject at hand.
Table of contents

1. **Overview** .. 9

 1.1 Introduction to the Panasonic FP OPC Server ... 9
 1.2 OPC and Its Underlying Technology ... 9
 1.3 Features of the FP OPC Server ... 13

 1.3.1 Connectivity ... 13
 1.3.2 Interruption Tolerance ... 14
 1.3.3 Communication Driver Test and Protocol Adaptation ... 15
 1.3.4 User Interface ... 15
 1.3.5 Namespaces .. 15
 1.3.6 Basic Software ... 17
 1.3.7 Online Changes ... 17
 1.4 Hardware and Software Requirements .. 18

2. **First Steps Using the FP OPC Server** .. 19

 1.5 Install the FP OPC Server .. 19
 1.6 Start/Stop the FP OPC Server Application ... 20

 1.6.1 Start the FP OPC Server Application .. 20
 1.6.2 Stop the FP OPC Server Application .. 22
 1.7 Channels ... 23

 1.7.1 Add a New Channel .. 23
 1.7.2 Update an Existing Channel .. 25
 1.8 Element Structure .. 26
 1.9 Devices .. 27

 1.9.1 Add a New Device .. 27
Table of contents

1.17 Toolbars .. 51
1.18 Wizard .. 51
 1.18.1 New Channel Wizard ... 52
 1.18.2 New Device Wizard ... 53
 1.18.3 New Tag Group Wizard ... 53
 1.18.4 New Tag Wizard ... 54
1.19 Project Information Input/Output .. 54
1.20 Communication Settings Dialog .. 55
 1.20.1 Serial Communication Settings ... 55
 1.20.2 Modem Communication Settings .. 57
 1.20.3 Ethernet Communication Settings ... 58
 1.20.4 Ethernet (Local) Communication Settings ... 60
 1.20.5 USB Communication Settings ... 63
1.21 System Tray ... 63

4. Namespaces .. 64
 1.22 Introduction to Namespaces .. 64
 1.23 Static, Manually Defined Namespace ... 65
 1.24 System Status Namespace ... 66
 1.25 MEWTOCOL OPC Server Compatibility Namespace .. 66

5. Appendix ... 69
 1.26 Panasonic Addresses .. 69
 1.26.1 Special Internal Relays .. 69
 1.26.2 Special Internal Data Registers ... 69
 1.27 Panasonic Data Types ... 70
Table of contents

1.28 Panasonic FP PLC Network Types .. 73
1.28.1 Serial Network ... 73
1.28.2 Ethernet Network .. 74
1.29 DCOM Configuration ... 75
1.30 Abbreviations .. 82

Index ... 85

Record of changes
Chapter 1

Overview

1.1 Introduction to the Panasonic FP OPC Server

The Panasonic FP OPC Server is a 32-bit Windows application with a modern user interface. It realizes the server end in the standard client/server model and incorporates the OPC DA standard. It allows you to share information between our proprietary devices (Panasonic FP Series PLCs) and any other device or application that supports the OPC DA standard.

OPC DA technology succeeds Microsoft’s Dynamic Data Exchange (DDE) technology in the demanding industrial environment.

1.2 OPC and Its Underlying Technology

OPC (OLE (Object Linking and Embedding) for Process Control) is the successor of DDE technology.

According to the OPC Foundation, “OPC is open connectivity in industrial automation and the enterprise systems that support industry. Interoperability is assured through the creation and maintenance of open standards specifications. There are currently seven standards specifications completed or in development ("What is OPC?"; www.opcfoundation.org http://www.opcfoundation.org)“.

OPC is based on a series of approved standards and technologies of the consumer computer world. It was originally based on OLE COM (Component Object Model) and DCOM (Distributed Component Object Model), which provide the framework. Microsoft even added OPC standard to the OLE specification. OPC interface applications are built once and used several
times, thus are approved and under constant quality control.

With OPC, data can be exchanged efficiently using a standardized interface, hence vendors do not have to implement their own communication drivers. Therefore it allows vendors to reduce implementation costs and save time, thus reducing the project cycle time.

OPC Foundation

The OPC Foundation defines itself as being "dedicated to ensuring interoperability in automation by creating and maintaining open specifications that standardize the communication of acquired process data, alarm and event records, historical data, and batch data to multi-vendor enterprise systems and between production devices. Production devices include sensors, instruments, PLCs, RTUs, DCSs, HMIs, historians, trending subsystems, alarm subsystems, and more as used in the process industry, manufacturing, and in acquiring and transporting oil, gas, and minerals (OPC Foundation; “What is the OPC Foundation?”; www.opcfoundation.org http://www.opcfoundation.org”).

The OPC Foundation is a cooperation of automation control product vendors and Microsoft. As of 2006, the foundation had about 300 members worldwide. The main standard, with which it all began, is the OPC DA (Data Access) specification.

Compliance tests are provided to the members to test OPC conformity.

COM

The **COM** (**Component Object Model**) interface defines the externally visible binary structure of a COM object. The COM object is hereby the implementation of this model and can be based on several interfaces which define access to the object. It offers runtime access to the incorporated interfaces of a COM object and interprocess communication. Reference counting is implemented to manage the object’s life cycle. Interactions between components are based on method-accesses defined in interfaces. COM applications are restricted to run locally on single computers only.
DCOM

Upon inception, **DCOM** (Distributed Component Object Model) faced two major challenges:

- program-based processing of information, which led to information being represented differently
- backwards compatibility to existing COM and DDE applications

OLE is based directly on DCOM. The DCOM interface allows COM applications to be distributed on several computers, providing a single security concept.

DCOM applications are restricted by not:

- running over firewalls
- being platform independent (only Microsoft operating systems are supported)
OPC Data Access (DA)

Version 1 of the OPC DA (Data Access) standard was released in 1996. Today version 3.0 is available. A task force within the OPC Foundation http://www.opcfoundation.org maintains and revises the OPC DA specification.

The specification shows and describes how to construct client and server applications and allows vendors to quickly develop their own applications. It defines object hierarchy consisting of several **OPC server objects**, which in turn can consist of several **OPC group objects**. The group objects themselves can be composed of **OPC item objects**. OPC items correspond to process values and represent connections to data sources.

![Object Hierarchy Diagram]

The COM interface incorporated in the server offers the client two object types: group and item. A server object is automatically created after the client connects to the server. Associated with each item is a time stamp, its quality and the value of the item as a VARIANT type. The item tags--tag, node or property objects--have to be realized on the server side.
The node objects can contain either other node objects or leaf objects. Node objects are implemented as channel, device or tag group elements within the FP OPC Server. Tag objects, which are implemented as tag elements, represent the leaf objects in the object tree.

The OPC client connected to the OPC server is responsible for the type of information it retrieves. It has to define the group structure, the poll rate and the read type, i.e. asynchronous or synchronous data retrieval. Using synchronous data retrieval, the client has to wait until the read operation is finished; using asynchronous data retrieval, on the other hand, allows the client to be informed immediately when data changes.

1.3 Features of the FP OPC Server

The Panasonic FP OPC Server is a OutProc Server, thus the server application is started from an autarkic executable file. The server allows high-performance data transfer between applications that support the OPC DA standard and Panasonic FP Series PLCs.

The following features are provided:

1.3.1 Connectivity

The server provides “two-sided” connectivity: one side provides access to applications that support OPC DA; the other side provides access to FP Series
Overview

PLCs.

In order to enable the user to perform functional tests, a simulation mode is implemented. This mode allows you to design the application without any PLC being connected to the computer.

OPC Connectivity

The server complies to the following OPC DA client/server technologies:

- OPC DA 1.0a
- OPC DA 2.05a
- OPC DA 3.0

Data can be exchanged between client and server in asynchronous, synchronous and refresh mode.

Device Connectivity

A standardized interface allows you to:

- monitor data from Panasonic FP PLCs
- synchronize data access and data writing
- use various communication types

PLCs can be accessed via serial port (see p. 73), modem (see p. 57) and Ethernet (see p. 74). The server offers modem support to connect to remote stations via dial-up phone calls.

Specify the communication mode at the communication channel level when you configure the application. Setting up the communication channel to use the modem means that dialing and connecting to the remote device is fully transparent to the OPC client application. Modem connections and direct serial communication work similarly.

1.3.2 Interruption Tolerance

In case a connected device stops responding, for instance because of a line interruption, the optimized communication is carried on for the still connected devices. Thus, the communication breakdown does not influence the time-out or response behavior of the devices which are still online. If the
device starts being responsive again, the data transfer from / to the previously disconnected PLC is reinitialized and carried out normally.

1.3.3 Communication Driver Test and Protocol Adaptation

If the server or application created with the server should be tested, the user can use a simulation driver to simulate reading and writing from and to virtual devices.

To test MEWTOCOL protocol communication, the channel settings made by the user can be tested directly in the server application. Furthermore, the user can influence the type of protocol (use of RD commands instead of MD commands) to be used to prevent interdependencies with other applications using the MEWTOCOL protocol, for instance.

For detailed information, please refer to the Options dialog of the Tools menu in the online help.

1.3.4 User Interface

A modern, intuitive user interface (see p. 41) allows you to configure the server. While creating the application, sophisticated user assistance is available at any time. Various hints and error notifications help you configure the server. Online documentation is omnipresent to clarify the server configuration application. You are warned of possible faulty settings or changes while the server is running. Wizard dialogs assist you in creating and altering elements.

The server allows you to change the display of the main window. The server can appear minimized as an icon in the system tray or maximized on the desktop. If started by an OPC client, the server is automatically started minimized in the tray icon, but can be brought to the foreground by simply double clicking the icon in the system tray (see p. 63).

1.3.5 Namespaces

The OPC client browse able namespace provided by the server represents a description of all process values an OPC client can query from. It can be
distinguished between three different types of namespace elements.

For detailed information, please refer to **Namespaces** (see p. 64).

Static, Manual Namespace

The manual, "static" namespace is specified in the configuration user interface of the server. The user who administers the server, creates channels, devices, tag groups and tags. The user specifies the settings of the communication lines, the PLC and the data sources to be provided to the client.

For detailed information, please refer to **Static, Manually Defined Namespace** (see p. 65).

System Status Namespace

This namespace contains system tags, which are used to provide status feedback on the server running. The client simply creates items of these tags and thereby retrieves the server status directly in the client application. The system status namespace shows the system date, system time, uptime, project path, number of tags, number of tags active in the clients and the number of clients connected.

For detailed information, please refer to **System Status Namespace** (see p. 66).

MEWTOCOL OPC Server Compatibility Namespace

A MEWTOCOL OPC Server (the predecessor of this server) compatibility namespace is also provided. The user configures the communication settings, which are common for the communication lines (serial (see p. 55), modem (see p. 57) or Ethernet (see p. 58)). To use this namespace, the OPC client has to create the items such that they follow a certain syntax. The item path can be adapted to the specific needs.

For syntax regulations and restrictions, please refer to **MEWTOCOL OPC Server compatibility namespace** (see p. 66).
1.3.6 Basic Software

The FP OPC Server is also available as Basic Software, which can be installed without a license number. After using the Basic Software for 120 minutes, you will be asked to save your project and all connections to the server are terminated. Watch the title bar to see how many minutes are left. You must confirm the message box displayed before you can restart the server.

This message box is also displayed if the connection is closed before the time has expired.

Please contact your local Panasonic distributor for the unlimited version.

1.3.7 Online Changes

During online sessions, i.e. when OPC clients are connected to the FP OPC Server, you can make comprehensive changes to the currently opened project. You can add new elements such as channels, devices, tag groups or
tag elements (see p. 46) to the project. You can apply all kinds of changes, except deleting and renaming, to all elements.

Note

You can only delete and rename elements which are not currently being used by the client.

1.4 Hardware and Software Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>Hard disk space</td>
<td>20MB or more</td>
</tr>
<tr>
<td>CPU grade</td>
<td>300MHz or more</td>
</tr>
<tr>
<td>Lowest capacity memory</td>
<td>128MB or more</td>
</tr>
<tr>
<td>Available display resolution</td>
<td>1024 *768 or more</td>
</tr>
<tr>
<td>Operating Systems</td>
<td></td>
</tr>
<tr>
<td>Microsoft Windows XP</td>
<td>SP3</td>
</tr>
<tr>
<td>Microsoft Windows Vista</td>
<td></td>
</tr>
<tr>
<td>Microsoft Windows 7</td>
<td></td>
</tr>
<tr>
<td>Microsoft Windows 8</td>
<td></td>
</tr>
<tr>
<td>Microsoft Windows 2003 Server</td>
<td>SP2</td>
</tr>
</tbody>
</table>
Chapter 2

First Steps Using the FP OPC Server

2.1 Install the FP OPC Server

Before you begin the installation, unzip “SetupFPOPCServerxx.zip” and save it on your hard drive.

1. Double-click “SetupFPOPCServerxx.exe” to run the installer
2. Select [Next]
3. Read and accept the “License Agreement”
4. Select [Next]

Enter your customer information and serial number (for the unlimited version only). The Basic version (see Basic Software in the online help) runs without serial number.

5. Select [Next]

The following dialog appears and allows you to review the path you entered.

6. Select [Browse] to select the installation directory
7. Select [Next]
First Steps Using the FP OPC Server

The following dialog appears.

8. Specify the location of the program icons in the start menu
9. Select [Next]

The dialog "Start Copying Files" appears so you can review your settings.

10. If the settings are OK, select [Next] to install the software
11. Select whether to restart your PC and then [Finish] to finish the installation

The Panasonic FP OPC Server is now installed on your system.

Start the FP OPC Server at least once to register the application in the windows system.

2.2 Start/Stop the FP OPC Server Application

2.2.1 Start the FP OPC Server Application

The OPC server can start in two modes:

- manually
- automatically, when an OPC client application tries to connect to the server.
Manual Start

1. Double-click the FP OPC Server icon

The configuration user interface with an empty project is started.

Automatic Start

1. Start the OPC client application

Here the Softing Demo Client is started.

2. Browse the available server list, select FP OPC Server and connect to the server

Here by double-clicking the icon.

Now the OPC server is started automatically and the server icon is displayed in the system tray (see p. 63).
The default project file (specified under **Tools → Options**) is automatically loaded, the OPC subsystem is started and the client is connected to the server. If no default project has been specified, the most recently used project is loaded.

If the OPC server application is started manually but the OPC subsystem has not been started, a new client connect starts the OPC subsystem and connects to this server instance.

2.2.2 Stop the FP OPC Server Application

The OPC server application also stops in two ways:

- manually, e.g. by user intervention
- automatically, after the last OPC client application terminates the connection to the OPC server.

Manual Stop

1. Select "Exit" in the File menu or tray icon menu

Alternatively, click the close button of the application window.
Automatic Stop

The OPC server automatically stops when all clients have disconnected.

The OPC server application is only terminated automatically if the configuration window is minimized to the system tray (see p. 63).

2.3 Channels

A channel represents a means of communication. The following means of communication are possible:

- Serial communication (see p. 73) (RS232)
- Modem (see p. 57)
- Ethernet (see p. 74)
- USB (see p. 63)

Please also refer to:

- Channel element in the online help
- New Channel Wizard (see p. 52)

2.3.1 Add a New Channel

There are four ways to add a new channel element:

1. Double-click the dummy element
2. Click a toolbar icon

3. Select menu **Edit → New → Channel**

4. Select **New Channel** from the navigator pane’s (see p. 46) pop-up menu.

In all cases the wizard (see p. 52) starts. Now create the new channel.

1. Specify a name for the new channel
2. Select the driver

For further information, refer to driver selection.

3. Fill in the communication settings by clicking [Settings...]

The communication settings (see p. 55) dialog will appear.

2.3.2 Update an Existing Channel

To update and existing channel element:

- double-click the channel element, or
- select Properties from the toolbar or pop-up menu.
Select "Properties" from the toolbar.

Select "Properties" from the pop-up menu.

2.4 Element Structure

The FP OPC Server allows the creation of a clearly membered hierarchical element structure that fits the nature of the application. The hierarchy consists of several layers: On the first layer, multiple communication channels specify the mean communication. The channels comprise multiple devices to specify the PLC and its station number. Devices can contain multiple tag groups to segregate tag data on a group-by-group basis. Devices or tag groups themselves contain the tag data (see p. 46).

A state-of-the-art import/export mechanism allow you to save, exchange or edit the data in the XML file format. Exchanging data can also be done using a CSV file. For further information, please refer to Import/Export Tag Information (see p. 54).
2.5 Devices

A device represents a hardware device, a Panasonic FP series PLC, connected to the OPC server.

The data sources provided by the server application in the namespaces (see p. 64) are situated on these devices. Data sources are hereby relay or register addresses (see p. 69), which can be accessed by the OPC server.

Please also refer to:

- Device element in the online help
- New Device Wizard (see p. 53)

2.5.1 Add a New Device

Procedure

1. Open the wizard (see p. 53) to create a new device element in one of the four ways described in "Add a New Channel (see p. 52)"

Here the dummy item is used to create a new device.

The wizard opens.

2. Specify a name for the new device.
3. To test the communication settings specified for the "Channel (see p. 23)", select [Test Communication]

![Identification Table]

To update an existing device, please refer to the procedure of update an existing channel (see p. 25).

2.6 Tag Groups

A tag group 📁 represents a structural element for grouping tag elements according to your application's needs. For instance, a group "Temperature" and "Liquid Level" can be created in the same device to distinguish between data sources related to temperature and those related to liquid levels.

Additionally a tag group can be used to assign a certain time stamp to all tags included in the tag group. The time stamp can be specified by a DATE_AND_TIME variable in the PLC project.

Please also refer to: New tag group wizard (see p. 53)

2.6.1 Add a New Tag Group

Procedure

1. Open the wizard (see p. 53) to create a new tag group element in one of the four ways described in "Add a New Channel (see p. 52)"
Here the pop-up menu is used to create the new tag group.

![Pop-up menu](image)

The wizard opens.

2. Specify the name of the tag group element

![Tag Group dialog box](image)

To update an existing tag group, please refer to the procedure of update an existing channel (see p. 25).

2.7 Tags

A tag represents a single PLC variable (address).

Please also refer to:

- Tag pane (see p. 46)
- New Tag Wizard (see p. 54)
2.7.1 Add a New Tag

Procedure

1. Create a tag as described in "Add a New Channel (see p. 23)" section

Here, the dummy item is used to create the new tag.

2. Double-click to add a new tag

![Double click to add a new Tag...]

The wizard opens.

3. Specify the name, correct address, data type, description and the access type of the tag element

4. Select [Insert] to add the element directly to the list without closing the dialog

Repeat selecting [Insert] to create a series of tag elements that count up tag names and addresses.

5. Select [OK] when you have finished adding all elements
2.7.2 Update an Existing Tag

You can update an existing tag in several ways.

For example, simply click in the field which should be changed, e.g. to update a name.

Change multiple elements by selecting the desired elements and typing or selecting the new value. In this case, 3 elements were selected and their access rights changed to "read only".
You can also change the tag's properties by double-clicking the tag to activate the wizard.

You can only update values for individual elements when you use the wizard.

2.8 Server Operation

In order to accept connections for an OPC client application, you must start the server's OPC subsystem by clicking . After the server is started, clients can connect to the server.

If the OPC server application is started manually but the OPC subsystem has not been started, a new client connect starts the OPC subsystem and connects to this server instance.
2.8.1 Start the Server

You will be notified when the server has been started successfully by:

- a log message (see p. 48) in the system log pane and
- an incrementing "Up Time (see p. 49)" value in the server status pane (see p. 49).
You can also see that a client is connected (here the Softing Demo Client) in the system log and server status panes.

2.8.2 Stop the Server

To stop the OPC subsystem, press `X`. All connections to OPC clients are terminated.

Now the demo client has been disconnected. A log message informs you that
the OPC client has been disconnected and that the server has stopped.

2.9 Transferring Project Information

You can save project data in XML or CSV format and exchange tag data between various OPC servers, e.g. Kepware or Beijers. You can also import global variables from Control FPWIN Pro in CSV format.

2.9.1 Open/Save Project

Procedure

Open Project

1. Select **File → Open** or 📜 from the toolbar
In the file open dialog all supported file formats (*.pos, *.xml) are displayed.

2. Select the desired file and click [Open]

Alternatively, select a file from the recently opened file list.

If no default project is specified in the options dialog, the most recently used project is automatically loaded when the client application starts the OPC server.
Save Project

1. Select **File → Save** or **Save As...** or of the toolbar

 ![Toolbar Image]

 The file save dialog opens:

 ![Save Dialog Image]

 2. Specify the project file name and file type (binary (*.pos) or XML (*.xml) format)

 3. Select [Save]

2.9.2 Import/Export Tag Data

In order to exchange, import, export or edit tag data, an export/import mechanism is available.

Procedure

Import tag data

1. Select the device or tag group element for which you want to import data
2. Select "Import" from the pop-up menu, the File menu or the navigator's toolbar

![Image of an import dialog]

3. In the "File Open" dialog, select the XML or CSV file you want to import. According to the import settings under **Tools → Options**, you can select whether:

- tags available in the import file but not in the project are added to the project
- tags not available in the import file but in the project are deleted from the project:

![Image of options settings]

Tags available in the import file and in the project will be updated.
The data is imported into the selected device or tag group item.

Import other file formats

The OPC Server can import global variables exported from FPWIN Pro or tag data exported from OPC Servers (Panasonic FP OPC Server, Kepware OPC Server, Beijers OPC Server). The various file formats are displayed below.

FPWIN Pro

Kepware OPC Server

Beijers OPC Server
Export tag data

1. Select the device or tag group element you want to export
2. Select "Export " from the pop-up menu, the File menu or the navigator's toolbar

3. Specify the file name and type

4. Select where you wish to save the file
5. Select [Save]

Now you can edit the file if desired, e.g. with a text editor:

Example for tag data exported in XML format

Example for tag data exported in CSV format
Chapter 3

Graphical User Interface (GUI)

3.1 Configure the Working Area

The FP OPC Server configuration user interface consists of various panes. All panes offer a pop-up menu and you can access most functions related to the panes with toolbar icons. For each item in the panes, context sensitive help can be displayed in the help pane (see p. 51). Tool tips assist the user in understanding the topics when the cursor passes over them. You can dock all panes except the tag pane (see p. 46) W. You can close unneeded panes to enlarge the working area. Use the view menu (see p. 44) to display the panes after they have been closed.
You can resize and move the entire application anywhere on the desktop. All user-defined layout settings, pane status and window position are saved upon closing and restored when the server is restarted.

Q The navigator pane (see p. 46) shows the hierarchical structure of channel, device and tag group elements. Elements of these types can be created and changed in this pane.

W The tag pane (see p. 46) is where tag elements are created or updated.

E The system log pane (see p. 48) shows the latest log messages, such as server status messages, client connections or connection timeouts and informs the user about these events.

R The server status pane (see p. 49) shows the server status information.

The help pane (see p. 51) displays the online help. You can temporarily slide open the pane by moving the mouse over the icon. Click on the icon if you prefer the pane to stay visible.
Customize your working area

You can move or dock all panes except the tag pane anywhere in the window.

3.2 Menu Names and Commands

The menu bar contains 6 menu names shown above. Please refer to the online help for detailed information under the keyword of the respective menu name.
3.2.1 File Menu

The File menu offers access to all file and project operations.

<table>
<thead>
<tr>
<th>File</th>
<th>Edit</th>
<th>View</th>
<th>Server</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>Ctrl+N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open...</td>
<td>Ctrl+O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save</td>
<td>Ctrl+S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save As...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Import...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.2 Edit menu

The Edit menu allows you to create new channels, devices, groups and tags as well as execute the standard Windows editing commands: cut, copy, paste, delete and select all.

3.2.3 View Menu

Display the navigator (see p. 46), system log (see p. 48) and server status panes (see p. 49) via this menu if they are hidden.
Display the help pane via the help menu (see p. 45).

Further information:
- Configure the working area (see p. 41)

3.2.4 Server Menu

The Server menu contains commands to control the server and set global communication parameters.

<table>
<thead>
<tr>
<th>Server</th>
<th>Tools</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Settings...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.5 Tools Menu

The Tools menu offers commands to start configuration and option dialogs.

<table>
<thead>
<tr>
<th>Tools</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCOM Configuration...</td>
<td></td>
</tr>
<tr>
<td>Options...</td>
<td></td>
</tr>
</tbody>
</table>

3.2.6 Help Menu

The help menu contains commands to access the online documentation, which can be displayed inside the application or as an external help window.

See also help pane (see p. 51).
3.3 Panes

The FP OPC Server user interface contains 5 panes described as follows.

3.3.1 Navigator Pane

The navigator pane shows channel, device and tag group elements in a hierarchical structure. A wizard (see p. 51) starts at each level to help you create new elements. To update existing elements, simply double-click the item; a wizard will appear in this case, too. You can directly access all commands available in this pane via the toolbar or pop-up menu.

Drag&Drop allows you to conveniently move device elements and tag group elements.

Note

On each hierarchical level, the name of the element has to be unique! For instance, only one channel element can be named "Com1".

For a detailed description of the navigator pane, please refer to the online help under the keyword "Navigator pane".

3.3.2 Tag Pane

The tag pane shows the tag elements in a list structure. A wizard (see p. 54) is started to help you create new elements. To update existing elements, simply double-click the item to open the wizard. You can make direct changes to the tag elements in the list by placing the cursor in the list cell or selecting an item from the combo box lists. To ease handling of many items, multiple rows can be selected and changes applied to all selected elements. The list
shows all properties of the tag element in a clearly arranged manner. All commands available in this pane are directly accessible from the toolbar or pop-up menu.

<table>
<thead>
<tr>
<th>Column number</th>
<th>Column Header</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Q | ✓ | Shows the status of the element:
Correct
Warning
Error
Hint: check the tool tip for help on configuring the element correctly. |
| | ✓ | Shows the tag's name
Each tag element that is child to the same parent must have a unique tag name, e.g. only one tag can be named "OutsideTemperature". |
| W | Name | Shows the element's name (see p. 69) |
| | | Shows the element's address (see p. 69) |
| | Data Type | Shows the element's data type (see p. 70) |
| | Creation Time | Displays the creation time and date |
| | Access Right | Shows the access rights of the tag |
| | Description | Allows you to enter a description for the tag |
| | ✓ | You can disable elements by deactivating this check box (multiple selection with <Ctrl> and/or <Shift>). Disabled elements are not visible inside the OPC client. |
Arrange elements in meaningful groups

For example, you wish to group elements by their enabled or disabled state. Simply drag the column header inside the field "Drag a column header" O.

You can also sort the list of tag items by simply clicking on the column header P.

To deselect multiple selected rows, simply click into column Q, W or E. Only the currently selected row will remain selected.

For a detailed description of the tag pane, please refer to the online help under the keyword "Tag pane".

3.3.3 System Log Pane

The system log pane displays information, warnings and error event messages.

For example, information about server start and stop events, client connects and disconnects are data time-outs are displayed. While the server application is running, log information is written into a log file. The log file path can be changed under **Tools → Options.**
See also: Configure the working area (see p. 41).

3.3.4 Server Status Pane

The server status pane shows actual status information about the server application. All commands available in this pane are directly accessible from the toolbar or pop-up menu.

The status information can also be directly retrieved from inside the OPC client by using the System namespace (see p. 66).

Server Status Pane

<table>
<thead>
<tr>
<th>Status</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Time</td>
<td>20.11.2006 20:33:51</td>
</tr>
<tr>
<td>Up Time</td>
<td>1m 24s</td>
</tr>
<tr>
<td>Connected Clients</td>
<td>0</td>
</tr>
<tr>
<td>Number of Tags</td>
<td>4</td>
</tr>
<tr>
<td>Number of Active Items</td>
<td>0</td>
</tr>
</tbody>
</table>

Server Time

The server time indicates the actual date and time of the server hosting system.

Up Time

The Up Time property is available when the server is running and displays how long the server has been up in "xxd(ays) xxh(ours) xxm(inutes) xxm(seconds)".

Connected Clients

The number of connected OPC clients is displayed.
Number of Tags

"Number of Tags" shows the total number of tags created within all devices and tag groups.

All tags including disabled elements are counted.

Number of Active Items

The number of tags actively monitored within any of the OPC clients (created as Items) is displayed.

The total number of tag instances is counted; if one client monitors the same element twice or two clients monitor the same element, the property counts both elements.

For a detailed description of the Server status pane, please refer to the online help under the keyword "Server status pane".
3.3.5 Help Pane

The help pane can be docked and reacts context-sensitively to the current mouse or cursor position. You can “pin” it open or have it slide open and closed by passing the cursor over it.

See also: Help menu (see p. 45).

3.4 Toolbars

Each of the panes (see p. 46) in the FP OPC Server's configuration user interface (see p. 41) contains a toolbar that allows you easy access to all commands available within the pane.

For a detailed description of the toolbar functions, please refer to the online help under the keyword "Toolbars".

3.5 Wizard

To simplify creating and modifying namespace elements (see p. 64), a
wizard-like configuration dialog has been implemented. The wizard is opened to help you create a new element when you have double-clicked a dummy element (see also dummy element of tag pane). You can likewise modify an existing element's properties by double-clicking on the element. The wizard also opens when you execute similar commands via the menu, pop-up menu or toolbar (see p. 51) icon.

Enter text

On the left side of the dialog text input fields, you must enter an element name, for example. If the text you have entered is wrong, the field turns red and a tool tip assists you with an error message.

Buttons

On the right side, the buttons, such as [OK], [Cancel] and - if available - the navigation buttons [Next] and [Previous] can be found. By pressing [Next], the next page (also accessible via a tab flag) is displayed.

Help

At the bottom of the dialog, the omnipresent, context-sensitive online help can be found embedded. By selecting another control, for instance the next edit field, the help automatically displays the corresponding help page.

3.5.1 New Channel Wizard

When you create or modify a channel element, the wizard is started in "(new) channel mode". You can view or modify an existing element, or create a new element.

The first page identifies the channel element. The channel's name is specified here.

On the second page, you select the I/O driver. If you have selected the MEWNET driver, a third page allows you to edit the communication settings.

For detailed information, please refer to the online help under the keyword "New Channel Wizard".
3.5.2 New Device Wizard

When you create or modify a device element, the wizard is started in "(new) device mode". You can view or modify an existing element, or create a new element.

The wizard shows the identification page of the device element. The device's name and station number are specified here.

For detailed information, please refer to the online help under the keyword "New Device Wizard".

3.5.3 New Tag Group Wizard

With the Tag Group Wizard, you can view or modify an existing tag group element, or create a new element.

The wizard shows the identification page of the tag group element.

For detailed information, please refer to the online help under the keyword "New Tag Group Wizard".
3.5.4 New Tag Wizard

When you create or modify a tag element (see p. 46), the wizard is started in "(new) tag mode". You can view or modify an existing element, or create a new element.

![New Tag Wizard screenshot]

The wizard shows the identification page of the tag element. The tag's name, address, data type, access type and enabled state is set here.

For detailed information, please refer to the online help under the keyword "New Tag Wizard".

3.6 Project Information Input/Output

Load/Save The Project

To save a new project or change an existing project, data can be stored in a project file on the hard disk in *.pos or *.xml format.

For further information on loading and saving project data, please refer to Open/Save Project (see p. 35).

Import/Export Tag Information

Tag group and tag elements can be exported to an XML (*.xml) or CSV (*.CSV) file. The CSV file is compatible with the GVL CSV export file of FPWIN Pro. Project data (tags) can also be exchanged with other OPC server providers. For further information, please refer to: Import/Export Tag data (see p. 37).
3.7 Communication Settings Dialog

You can set communication parameters if you are using the MEWNET driver or if you want to configure the MEWTOCOL compatibility namespace (see p. 66). The following communication types are provided:

- Serial
- Modem
- Ethernet
- USB

3.7.1 Serial Communication Settings

If "C-Net (RS232)" is selected as the network type, the following dialog appears.
Graphical User Interface (GUI)

#### Parameter	Description
COM Port | Select a COM port
Baud Rate | Depending on the PLC used, choose a baud rate between 1200 and 115200 for communication between PLC and PC. Default is 9600 bps.
Data length | Select either 7 bits or 8 bits. (Default: 8 bits)
Stop Bit | Select either 1 bit or 2 bits. (Default: 1 bit)
Parity | Select from None, Odd, and Even. (Default: Odd)
Time-out | Set the time allowed (0-60 sec.) for communication to be established with the PLC. (Default: 5 sec.)
Parameter for automatic setting: | Activate the check box for the matching condition you want to search for when the communication parameters differ from the PLC. (Default: all check boxes are activated.)
If no check box is activated, FPWIN Pro will not automatically search for suitable communication parameters.

Note

If the check box for "Parameter for automatic setting" is not activated, FP OPC Server will not automatically search for suitable communication parameters.

You can also connect to a PLC network. The settings to be made depend on the PLC type and kind of connection. The FP OPC Server automatically searches for the suitable parameters unless you have deactivated this feature. Please also refer to the corresponding hardware manuals.
3.7.2 Modem Communication Settings

If you select "MODEM" as the network type, the following dialog appears:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM Port</td>
<td>Select from COM1-COM5 via which the modem is connected.</td>
<td>COM1</td>
</tr>
<tr>
<td>Dial mode</td>
<td>Select the dial mode (pulse, tone or self-defined) used by the modem.</td>
<td>Pulse</td>
</tr>
<tr>
<td>Initial AT command</td>
<td>A modem manufacturer database is available which lists many standard modem models with their initialization strings.</td>
<td>ATV1E0S0=1S2=43</td>
</tr>
<tr>
<td>Title</td>
<td>Enter a title for the communication settings set.</td>
<td></td>
</tr>
<tr>
<td>Telephone number</td>
<td>Enter the telephone number to dial.</td>
<td></td>
</tr>
<tr>
<td>[Connect]</td>
<td>Click [Connect] to establish the connection.</td>
<td></td>
</tr>
<tr>
<td>[Disconnect]</td>
<td>Click [Disconnect] to terminate a previously started connection.</td>
<td></td>
</tr>
<tr>
<td>Baud Rate</td>
<td>Depending on the modem used, choose a baud rate between 1200 and 115200 for communication between PLC and PC.</td>
<td>9600bps</td>
</tr>
</tbody>
</table>
The FP OPC Server can communicate with a peripheral controller that is connected via modem. When the server communicates with a Panasonic PLC, a modem can be attached directly to the CPU (except for FP1 C14/C16).

3.7.3 Ethernet Communication Settings

If "Ethernet" is selected as "Network type", the following dialog appears.

Set the communication parameters using Ethernet according to your...
Hardware. This connection is based on TCP/IP protocol.

Ensure you are familiar with IP addresses, ET-LAN units and Ethernet before using this connection. Especially when using the ET-LAN unit, understand the "ET-LAN SYSTEM Technical Manual" fully, and use the same settings on your computer.

Set or change the following parameters if necessary:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use ET-LAN unit</td>
<td>Check the checkbox when you use the ET-LAN unit. Do not check the checkbox when using the Ethernet-RS232C converter, etc., for example.</td>
</tr>
<tr>
<td>Title</td>
<td>Enter a title up to 38 characters long.</td>
</tr>
<tr>
<td>Computer: IP address</td>
<td>Set automatically. If not displayed, set properties of TCP/IP from network setting in control panel. (The setting procedure differs depending on the operating system used. Please refer to the Manuals and Help of OS.)</td>
</tr>
<tr>
<td>Port No.</td>
<td>Specify a value between 1025 and 32767 in decimal format (default: 1025). The Port No. for the IP address must be a unique, i.e. it cannot be used twice on your computer.</td>
</tr>
<tr>
<td>Station No.</td>
<td>Specify a value between 1 and 64 in decimal format (default: 64). Specify a Station No. different from the destination Station No. (PLC) that follows. (If ET-LAN unit is not used, Station No. is ignored.)</td>
</tr>
<tr>
<td>Destination: IP address</td>
<td>Specify IP address of destination (PLC) to communicate with.</td>
</tr>
<tr>
<td>Port No.</td>
<td>Specify a value between 1 and 32767 in decimal format (default: 1025) different from above.</td>
</tr>
<tr>
<td>Station No.</td>
<td>Specify a value between 1 and 64 in decimal format (default: 1). Specify a Station No. different from the computer's Station No. above. (If ET-LAN unit is not used, Station No. is ignored.)</td>
</tr>
<tr>
<td>Communication Time-out</td>
<td>Specify a value between 1 and 950 seconds (default: 10).</td>
</tr>
<tr>
<td>Connection Time-out</td>
<td>Specify a value between 1 and 180 seconds (default: 60).</td>
</tr>
</tbody>
</table>
Graphical User Interface (GUI)

3.7.4 Ethernet (Local) Communication Settings

The "Ethernet (Local) Communication Settings" dialog is only available via **Server → Communication Settings** and can be configured using the MEWTOCOL OPC Server Compatibility Namespace (see p. 66) only.

You can only change the communication parameters for the OPC Server if the OPC subsystem has not been started (see Start/Stop the FP OPC Server Application (see p. 20)).

Descriptions of Buttons:

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[OK]</td>
<td>Click [OK] to save the communication settings; the current settings are not entered into the Entry List. If you want to enter them into the Entry List, click [Add Entry] before clicking [OK].</td>
</tr>
<tr>
<td>[Initialize]</td>
<td>To reset the current setting’s parameters to the initial settings, click [Initialize].</td>
</tr>
<tr>
<td>[Refer...]</td>
<td>When another program (an PEW application) is communicating with the PLC via the Ethernet and you want to connect to the same PLC, click [Refer...]. Then you can connect to the PLC easily by selecting the task in the TCP/IP Run List. No complicated procedure is required. Refer to the other task’s settings for details.</td>
</tr>
<tr>
<td>[Entry List...]</td>
<td>To reuse parameters registered in the Entry List, click [Entry List...].</td>
</tr>
<tr>
<td>[Add Entry]</td>
<td>To add the current setting parameters to the Entry List, click [Add Entry].</td>
</tr>
</tbody>
</table>
Set the communication parameters using Ethernet according to your Hardware. This connection is based on TCP/IP protocol.

Ensure you are familiar with IP addresses, ET-LAN units and Ethernet before using this connection. Especially when using the ET-LAN unit, understand the "ET-LAN SYSTEM Technical Manual" fully, and use the same settings on your computer.
Set or change the following parameters if necessary:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer: IP address</td>
<td>Set automatically. If not displayed, set properties of TCP/IP from network setting in control panel. (The setting procedure differs depending on the operating system used. Please refer to the manuals and help of the OS.)</td>
</tr>
<tr>
<td>Port No.</td>
<td>Specify a value between 1025 and 32767 in decimal format (default: 1025). The Port No. for the IP address must be a unique, i.e. it cannot be used twice on your computer.</td>
</tr>
<tr>
<td>Station No.</td>
<td>Specify a value between 1 and 64 in decimal format (default: 64). Specify a Station No. different from the destination Station No. (PLC) that follows. (If ET-LAN unit is not used, Station No. is ignored.)</td>
</tr>
</tbody>
</table>

Use LinkUnit Station Number

- **Activated**: only one entry for a destination is possible
- **Deactivated**: you get access to the destination entry list to re-use parameters already entered

<table>
<thead>
<tr>
<th>Destination: Use ET-LAN unit</th>
<th>Check the checkbox when you use the ET-LAN unit. Do not check the checkbox when using the Ethernet-RS232C converter, etc., for example.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>Specify IP address of destination (PLC) to communicate with.</td>
</tr>
<tr>
<td>Port No.</td>
<td>Specify a value between 1 and 32767 in decimal format (default: 1025) different from above.</td>
</tr>
<tr>
<td>Station No.</td>
<td>Specify a value between 1 and 64 in decimal format (default: 1). Specify a Station No. different from the computer’s Station No. above. (If ET-LAN unit is not used, Station No. is ignored.)</td>
</tr>
</tbody>
</table>

| Communication Time-out | Specify a value between 1 and 950 seconds (default: 10). |
| Connection Time-out | Specify a value between 1 and 180 seconds (default: 60). |

Descriptions of Buttons:

- **[OK]**: Save the communication settings.
- **[Initialize]**: To reset the current setting’s parameters to the initial settings, click [Initialize].
- **[Add]**: Add a new entry to the entry list.
- **[Change]**: Select a line and click [Change] to change the parameters of the selected entry.
- **[Delete]**: Select a line and click [Delete] to delete the selected entry.
3.7.5 USB Communication Settings

If "USB" is selected as the network type, the following dialog appears. Using this setting you can configure transparent PLC communication via the USB port of a GT panel.

Specify a time-out value between 1s and 60s (default 5s).

3.8 System Tray

When the server application is started, a tray icon appears in the window's system tray. The icon offers easy access to the main server functions, such as starting and stopping the server and maximizing or exiting the application.

In case of an automatic start, i.e. the OPC client starts the FP OPC Server, the OPC Server is minimized to the tray only. To maximize the Configuration User Interface, either double-click on the FP OPC Server tray icon or select "Minimize/Maximize to Tray" from the System Tray menu.
Chapter 4

Namespaces

4.1 Introduction to Namespaces

A namespace is a hierarchical tree structure of elements. Namespaces are set up within the server and can be browsed for with an OPC client application.

Three different namespaces can be built within the server:

1. User-defined manual namespace (see p. 65)
2. System status namespace (see p. 66)
3. MEWTOCOL OPC Server compatibility namespace (see p. 66) that ensures backward compatibility with the previous MEWTOCOL OPC Server.
4.2 Static, Manually Defined Namespace

The static namespace has to be defined by the user in the FP OPC Server configuration user interface as described in the previous chapters (left hand image).

The root elements in the tree are the channel elements, which embody the means of communication, i.e. the communication line.

<table>
<thead>
<tr>
<th>Server side</th>
<th>Client side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each channel element can contain device elements, which represent the devices where the data sources are located. On the next level, tag group combine elements in a way that makes sense for the particular application. The leafs of the tree are the tag elements (see p. 46). These elements directly represent the data sources offered to the OPC client application.

On the right, the namespace representation within the OPC client can be seen.

You cannot use elements named COMXXNXX or ETHERNXXNXX (e.g. COM1N64) in accordance to the regulations of MEWTOCOL OPC Server Compatibility Namespace (see p. 66).
4.3 System Status Namespace

The system status namespace provides the client application with general feedback about the server.

- _SystemVariables
 - _SystemDate
 - _SystemTime
 - _SystemDateTime
 - _Uptime
 - _ProjectPath
 - _TotalTagCount
 - _ClientCount
 - _ActiveTagCount

For a detailed description of the read only tags, please refer to the online help under the keyword "System Status Namespace".

4.4 MEWTOCOL OPC Server Compatibility Namespace

The previous OPC server, the MEWTOCOL OPC Server, did not support the definition of a static namespace (see p. 65). The Tags are accessed by defining the access path according to a certain syntax.

In order to be backward compatible, the FP OPC Server supports the MEWTOCOL OPC Server namespace. You must define the communication settings beforehand in the communication settings dialog (see p. 55) that opens via Server → Communication Settings.

- COM1N1
 - <CT0
 - <CDT10
 - <80DT20
 - <b0FL0
 - <BDT40
 - <F0

- COM2N1
- COM3N1
- COM4N1
- COM5N1
- ETHERN1

You must specify the communication channel on the first layer:
COM (serial and modem) communication

COMXXNXX

- **Com port number**: 1 - 99
- **PLC station number**: 0 - 99

<table>
<thead>
<tr>
<th>XX</th>
<th>The first two placeholders should specify the communication port to be used.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Optional. For C-NET must be "N".</td>
</tr>
<tr>
<td>XX</td>
<td>Optional. The second two placeholders specify the PLC station number if the PLC is connected via C-NET.</td>
</tr>
</tbody>
</table>

Ethernet communication

ETHERNXXNXX

- **Ethernet "station" number**: 1 - 64
- **PLC station number**: 0 - 99

Note
For further information, please refer to Panasonic FP PLC Network Types (see p. 73).
The second layer represents the Tag layer directly. Here, the item corresponding to the data source is created according to the following syntax conventions:

<[1][2][3][4]Address where:

<table>
<thead>
<tr>
<th>Optional</th>
<th>Description</th>
<th>Values</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>Specifies a memory bank number</td>
<td>b0 to b15</td>
<td>If empty, no bank is specified.</td>
</tr>
<tr>
<td>[2]</td>
<td>Specifies the number of numerical data words.</td>
<td>w1 (1 word) w2 (double word)</td>
<td>If empty, 1-word data types are used.</td>
</tr>
<tr>
<td>[3]</td>
<td>Specifies the number of character data words.</td>
<td>s1 to s256</td>
<td>If empty, the value is displayed as decimal</td>
</tr>
<tr>
<td>[4]</td>
<td>Specifies double word.</td>
<td>D</td>
<td>If empty, 1-word data types are used. D overrides w1 specified in [2]</td>
</tr>
</tbody>
</table>

- In contrast to the MEWTOCOL OPC Server, modem connections can also be used via COMXXNXX nodes.
- This namespace can also be used to dynamically create item instances within the OPC client application.
Chapter 5

Appendix

5.1 Panasonic Addresses

Panasonic FP Series PLCs use addresses from which you can read data or to which you can write data. Both bit and word addresses are used.

5.1.1 Special Internal Relays

Special internal relays turn on and off under special conditions. The on and off states are not output externally. Writing is not possible with the FP OPC Server, a programming tool or an instruction.

Reference

For further information on special internal relays, please refer to the hardware manual of your Panasonic PLC.

5.1.2 Special Internal Data Registers

Special data registers are one word (16-bit) memory areas which store specific information. Writing is not possible with the FP OPC Server, a programming tool or an instruction.

Reference

For further information on special data registers, please refer to the hardware manual of your Panasonic PLC.
5.2 Panasonic Data Types

Panasonic's FP OPC Server supports several data types described hereafter.

Undefined - Undefined Data Type

An undefined data type is selected per default. If this data type is not changed, the OPC Server automatically adopts the data type according to the address of the variable.

Boolean - Boolean Data Type (1-bit)

Variables of the data type BOOL are binary variables. They can either have the value 0 or 1, and are 1 bit long.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Meaning</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>FALSE</td>
<td>The variable is switched off, i.e. it is not set.</td>
</tr>
<tr>
<td>1</td>
<td>TRUE</td>
<td>The variable is switched on, i.e. it is set.</td>
</tr>
</tbody>
</table>

Signed 16-bit

Variable values of the data type Signed 16-bit are natural numbers without decimal places.

Range: -32768–32767

Unsigned 16-bit

Variable values of the data type Unsigned 16-bit are numerical numbers without decimal places.

Range: 0–65535

Signed 32-bit

Variable values of the data type Signed 32-bit are natural numbers without decimal places.
Range: -2147483648–2147483647

Unsigned 32-bit

Variable values of the data type Unsigned 32-bit are numerical numbers without decimal places.

Range: 0–4294967295

Word 16-bit

A variable of the data type Word 16-bit consists of 16 binary states. The switching states of 16 in/outputs can be combined in one word.

Word 32-bit

A variable of the data type Word 32-bit consists of 32 binary states. The switching states of 32 in/outputs can be combined in one double Word.

Float 32-bit

Variables of the data type Float 32-bit consist of real numbers or floating point constants and can include up to seven effective digits. The mantissa consists of 23 bits and the exponent of 8 bits (based on IEEE754).

Range: -3.402823*E38 to -1.175494*E-38, 0.0, +1.175494*E-38 to +3.402823*E38.

String - String Data Type (Variable Length)

The data type STRING consists of a series of up to 255 ASCII characters. All
ASCII characters are considered as characters.

BCD 16-bit

The BCD represents a code scheme for numbers that allows base-ten computer calculation instead of the more common base two. BCD manipulation preserves accuracy by reducing round-off errors. BCD encoding is performed by using a four-digit binary number to encode each digit of the base ten number.

<table>
<thead>
<tr>
<th>BCD</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
</tr>
</tbody>
</table>

BCD 32-bit

The encoding of the BCD 32-bit is similar to the BCD 16-bit (see p. 72) data type, but instead of being 16 bits long, the BCD 32-bit consists of 32 bits.

Date

Variable values of the data type Date are date literals.

Range: 2001-01-01–2099-12-31

Date And Time

Variable values of the data type Date And Time are date and time literals.
Range: 2001-01-01-00:00:00–2099-12-31-23:59:59

Time Of Day

Variable values of the data type Time Of Day are time of day literals.
Range: 00:00:00–23:59:59

5.3 Panasonic FP PLC Network Types

A Panasonic FP Series PLC can be connected to the PC in various ways. The PLC can be connected using the serial port (see p. 73) or Ethernet (see p. 74).

For further information on the different network types and how to connect and to wire the PLC, please refer to the appropriate hardware manual.

5.3.1 Serial Network

Direct connection

The PLC is directly connected to the PC using the serial communication line.

Reference
C-NET adapter connection

A maximum of 99 PLCs (FP-Sigma PLCs) can be connected to a single PC.

The access path is for example (using the MEWNET compatibility syntax):

- Node1: COM1N1
- Node2: COM1N2
- Node3: COM1N3

Note

This version of the FP OPC Server does not support the MEWNET W/W2 remote access.

5.3.2 Ethernet Network

PLCs can be connected to the PC via Ethernet.

Each PLC is connected to a HUB or SWITCH
The access path is for example (using the MEWNET compatibility syntax):

- Node1: ETHERN1
- Node2: ETHERN2
- Node3: ETHERN3

This version of the FP OPC Server does not support the MEWNET W/W2 remote access.

5.4 DCOM Configuration

Starting with Windows XP Service Pack 2, Microsoft implemented a new security strategy. This step, amongst others, was needed to reduce XP's vulnerability to dangerous attacks from outside (e.g. the Internet). This was realized by shielding the computer from the network side and various other improvements.
In order to access the OPC Server from a client not installed on the same machine, DCOM (see p. 11) communication has to be set up. You have to adapt two areas of the Windows XP operating system:

- the firewall (network shielding) settings
- the DCOM security settings

The first step has already been done during the installation phase. After installing the FP OPC Server, you will find three new firewall rules: "DCOM Port 135 TCP", "OPC Enumeration Service" and "FP OPC Server 2". These rules enable the firewall to accept incoming requests to the FP OPC Server.

DCOM enhancements

The DCOM settings specify the limits and security constraints, such as launch and access permissions for the FP OPC Server. Launch permissions hereby specify the users who are allowed to start an application. Access permissions grant specified users access to the application.

Procedure

1. Select **Tools → DCOM configuration**

 You get access to the DCOM (see p. 11) security settings.

2. Within the tree, expand "Component Services" and "Computers"

3. From the pop-up menu of "My Computer", select "Properties"
4. Select the "COM Security" tab

Perform the following five steps to adapt the permission configurations.

Step 1: Edit access permission

1. Select [Edit Limits...] under "Access Permissions"
The user named "ANONYMOUS LOGON" is mandatory for the OPC Enumeration function.

2. Activate both "Allow" check boxes, for "Local Access" and "Remote Access"

3. [OK]

Step 2: Edit launch permission

1. Under "Launch and Activation Permissions", select [Edit Limits...]
The user "Everyone" has to be adapted.

2. Activate all 4 "Allow" check boxes, for "Local Launch", "Remote Launch", "Local Activation" and "Remote Activation"

3. [OK]

To reduce the access rights to a smaller group of users, select only the desired users from the list instead of the general user "Everyone".

Step 3: Add a new user who can remotely access the OPC Server

1. Under "Access Permissions", select [Edit Default...]
2. Add a new user who can remotely access the OPC Server
3. Activate both "Allow" check boxes, for "Local Access" and "Remote Access"

- Local Access:
 - [] Allow
 - [x] Deny
- Remote Access:
 - [] Allow
 - [] Deny

4. Under "Launch and Activation Permissions", select [Edit Default...]

5. For the new user entry, select all 4 launch types.

- Local Launch
 - [x] Allow
 - [] Deny
- Remote Launch
 - [] Allow
 - [x] Deny
- Local Activation
 - [] Allow
 - [x] Deny
- Remote Activation
 - [x] Allow
 - [] Deny

6. [OK] to close the "My Computer Properties" dialog

Step 4: Activate the interactive user

1. Under "My Computer", expand "DCOM Config"

2. Select "FP OPC Server 2"
3. From the pop-up menu, open the FP OPC Server properties
4. Select the "Identity" tab and activate the "Interactive user" who shall run the OPC Server

![FP OPC Server Properties](image)

5. [OK]

Step 5: Reboot your PC after changing the DCOM security settings
5.5 Abbreviations

BCD

Binary Coded Decimal

See also: **BCD 16-bit** (see p. 72)

COM

Component Object Model

CSV

Character Separated Values

DA

Data Access

DCOM

Distributed Component Object Model

DDE

Dynamic Data Exchange

GVL

Global Variable List (Control FPWIN Pro)

OLE

Object Linking and Embedding
OPC

OLE for Process Control

OutProc

An OutProc server realizes one of three characteristics of a standardized OPC server. If implemented as an OutProc server, the application is started by an OPC client from an autarkic executable file. The server application can reside on the local or a remote machine.

PLC

Programmable Logic Controller

XML

Extended Markup Language
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Abbreviations</td>
<td>83</td>
</tr>
<tr>
<td>Add a New Channel</td>
<td>23</td>
</tr>
<tr>
<td>Add a New Device</td>
<td>27</td>
</tr>
<tr>
<td>Add a New Tag</td>
<td>30</td>
</tr>
<tr>
<td>Add a New Tag Group</td>
<td>28</td>
</tr>
<tr>
<td>Appendix</td>
<td>69</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Basic Software</td>
<td>16</td>
</tr>
<tr>
<td>BCD</td>
<td>83</td>
</tr>
<tr>
<td>BCD 16-bit</td>
<td>72</td>
</tr>
<tr>
<td>BCD 32-bit</td>
<td>72</td>
</tr>
<tr>
<td>Before beginning</td>
<td>1</td>
</tr>
<tr>
<td>Boolean - Boolean Data Type (1-bit)</td>
<td>70</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Channels</td>
<td>23</td>
</tr>
<tr>
<td>COM</td>
<td>10, 84</td>
</tr>
<tr>
<td>Communication Driver Test and Protocol Adaptation</td>
<td>14</td>
</tr>
<tr>
<td>Communication Settings Dialog</td>
<td>55</td>
</tr>
<tr>
<td>Configure the Working Area</td>
<td>42</td>
</tr>
<tr>
<td>Connected Clients</td>
<td>49</td>
</tr>
<tr>
<td>Connectivity</td>
<td>13</td>
</tr>
<tr>
<td>CSV</td>
<td>84</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td>84</td>
</tr>
<tr>
<td>Data Types</td>
<td>70</td>
</tr>
<tr>
<td>Date</td>
<td>72</td>
</tr>
<tr>
<td>Date And Time</td>
<td>73</td>
</tr>
<tr>
<td>DCOM</td>
<td>11, 84</td>
</tr>
<tr>
<td>DCOM Configuration</td>
<td>76</td>
</tr>
<tr>
<td>DDE</td>
<td>84</td>
</tr>
<tr>
<td>Device Connectivity</td>
<td>13</td>
</tr>
<tr>
<td>Devices</td>
<td>26</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Edit menu</td>
<td>44</td>
</tr>
<tr>
<td>Element Structure</td>
<td>26</td>
</tr>
<tr>
<td>Ethernet (Local) Communication Settings</td>
<td>60</td>
</tr>
<tr>
<td>Ethernet Communication Settings</td>
<td>58</td>
</tr>
<tr>
<td>Ethernet Network</td>
<td>75</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Features of the FP OPC Server</td>
<td>13</td>
</tr>
<tr>
<td>Features of the OPC Server</td>
<td>13</td>
</tr>
<tr>
<td>File Menu</td>
<td>44</td>
</tr>
<tr>
<td>First Steps Using the FP OPC Server</td>
<td>19</td>
</tr>
<tr>
<td>Float 32-bit</td>
<td>71</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Graphical User Interface (GUI)</td>
<td>42</td>
</tr>
<tr>
<td>GVL</td>
<td>84</td>
</tr>
</tbody>
</table>
Hardware and Software Requirements ... 17
Help Menu .. 45
Help Pane .. 51
Import/Export Tag Data ... 37
Import/Export Tag Information ... 54
Important symbols ... 2
Install the FP OPC Server ... 19
Interruption Tolerance ... 14
Introduction to Namespaces ... 64
Introduction to the Panasonic FP OPC Server 9
Load/Save The Project ... 54
Menu Names and Commands ... 43
MEWTOCOL OPC Server Compatibility
 Namespace .. 66
Modem Communication Settings .. 57
Namespaces ... 15, 64
Navigator Pane ... 46
New Channel Wizard .. 52
New Device Wizard ... 53
New Tag Group Wizard ... 53
New Tag Wizard .. 54
Number of Active Items ... 49
Number of Tags .. 49
OLE ... 84
Online Changes .. 17
OPC .. 84
OPC and Its Underlying Technology ... 9
OPC Connectivity ... 13
OPC Data Access (DA) ... 11
OPC Foundation .. 10
Open/Save Project ... 35
OutProc ... 84
Overview .. 9
Panasonic Addresses .. 69
Panasonic Data Types ... 70
Panasonic FP PLC Network Types .. 73
Panes .. 46
PLC ... 85
Project Information Input/Output .. 54
Record of Changes ... 90
Serial Communication Settings .. 55
Serial Network ... 74
Server Menu .. 45
Index

Server Operation ... 32
Server Status Pane....................................... 49
Server Time ... 49
Signed 16-bit ... 70
Signed 32-bit ... 70
Special Internal Data Registers 69
Special Internal Relays 69
Start the FP OPC Server Application 20
Start the Server ... 33
Start/Stop the FP OPC Server Application 20
Static, Manually Defined Namespace 65
Stop the FP OPC Server Application 22
Stop the Server ... 34
String - String Data Type (Variable Length) 71
System Log Pane 48
System Status Namespace 66
System Tray .. 63
Tag Groups .. 28
Tag Pane .. 46
Tags .. 29
Time Of Day ... 73
Toolbars .. 51
Tools Menu ... 45
Transferring Project Information 35

U

Undefined - Undefined Data Type 70
Unsigned 16-bit ... 70
Unsigned 32-bit ... 71
Up Time .. 49
Update an Existing Channel 25
Update an Existing Tag 31
USB Communication Settings 63
User Interface .. 14

V

View Menu .. 44

W

Wizard ... 51
Word 16-bit .. 71
Word 32-bit .. 71

X

XML .. 85
Record of Changes

<table>
<thead>
<tr>
<th>Manual No.</th>
<th>Date</th>
<th>Description of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGM0143V1.0END</td>
<td>Dez. 2006</td>
<td>First edition</td>
</tr>
<tr>
<td>ACGM0143V1.1END</td>
<td>Jan. 2007</td>
<td>Updated documentation: notes on removing the software.</td>
</tr>
<tr>
<td>ACGM0143V1.2END</td>
<td>Apr. 2007</td>
<td>The description of Ethernet (Local) communication has been moved to the section Communication Settings (see p. 55).</td>
</tr>
<tr>
<td>ACGM0143V1.3END</td>
<td>Mai 2007</td>
<td>Microsoft Windows Vista compatible</td>
</tr>
<tr>
<td>ACGM0143V1.4EN</td>
<td>Sept. 2007</td>
<td>MEWNET W/W2 connection removed</td>
</tr>
<tr>
<td>ACGM0143V1.5EN</td>
<td>Mai. 2008</td>
<td>New options are available under Tools → Options → Event Log Settings: Enable debug message logging Enable memory status message logging</td>
</tr>
<tr>
<td></td>
<td>Jan. 2010</td>
<td>Update for release of FP OPC Server 2. See the section "New in this version" in the online help.</td>
</tr>
<tr>
<td></td>
<td>Sept. 2010</td>
<td>Update for release of FP OPC Server 2.01. See the section "New in this version" in the online help.</td>
</tr>
<tr>
<td>ACGM0143V2EN</td>
<td>Oct. 2011</td>
<td>Update for release of FP OPC Server 2.02. See the section "New in this version" in the online help.</td>
</tr>
<tr>
<td>ACGM0143V3EN</td>
<td>July 2013</td>
<td>Update for release of FP OPC Server 2.021. See the section "New in this version" in the online help.</td>
</tr>
</tbody>
</table>